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SUMMARY

The significance of additive drag is discussed and equations for

determining its approximate value are derived for annular- and open-nose

inlets. Charts are presented giving values of additive drag coeffi-

cient over a range of free-stream Mach numbers for open- and for
annular-nose inlets with conical flow at the inlet. The effects on

additive drag of variable Inlet-total-pressure recovery and static pres-

sures on the center body are investigated and an analytical method of

predicting the variation of pressure on the center body with mass-flow

ratio is given.

Experimental additive-drag values are presented for a series of 20°

and 25° cone half-angle inlets and one open-nose inlet operating at

free-stream Mach numbers of 1.8 and 1.6. A comparison with the theoret-

ical values of additive drag shows excellent agreement for the open-nose

inlet and moderately good agreement for the annular inlets.

INTRODUCTION

In the analysis of engine performance it has been customary to
define a net-thrust term that is evaluated between the outlet of the

engine and a station ahead of the engine where the entering stream tube

is at free-stream conditions. If the area of the entering stream tube

at free-stream conditions is not equal to the inlet area, conditions at

the inlet differ from those in the free stream and if the flight veloc-

ity is supersonic, an additional force must be considered in deter-
mining the net propulsive thrust. This additional force has been called

additive drag (reference 1). At subsonic flight velocities, however,

this additional force is approximately counterbalanced by a decrease in

the engine nacelle pressure drag and, consequently, it has not been cus-

tomary, when considering subsonic aircraft, to bres_ down engine nacelle
drag into its component parts.

A theoretical method of predicting the magnitude of the additive

drag at supersonic speeds that is based upon an analysis of the location
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of detached shock waves as a function of relative mass flow and Mach num-

ber is included in reference 2, and a method based upon an analysis of
the entering stream tube is included in reference 3. For configurations

having side inlets, an analysis of the effect of changes in the entering

air conditions ahead of the inlet is given in reference 4. A method of

determining the sum of additive and cowl-pressure dra_s from an analysis
of the external shock configuration is presented in reference 5. Some

experimental values of additive drag at Mach numbers from 1.38 to 2.0

are given in references 6 to 8.

In this report, the necessit? for including the effect of additive

drag in calculating the net propulsive thrust is discussed and a modi-

fied method of predicting the additive drag is presented. Theoretical

values calculated by the modified method are campared with the values

predicted by the methods given in references 2 and 3 and with experi-
mental values of additive drag obtained from tests of ram Jets in the

8- by 6-foot supersonic tunnel. Experimental values of additive drag,

obtained using the method of reference 5, are compared with values

obtained from pressure measurements.

_o

_o

A

A

cd,a

Cf,s

Cs

Da

SYMBOLS

The following symbols are used in this report:

flow area, (sq ft)

capture area, cross-sectional area at cowl lip including center-
body area, (sq ft)

cross-sectional area of center body at station i, (sq ft)

component of surface area perpendicular to longitudinal axis

of inlet, (sq ft)

area of center body where it is intersected by bow wave, (sq ft)

additive-drag coefficient, 2Da/_0V02Ac

friction-force coefficient on center body, 2Ff,s/%VO2Ac

incremental-cone-pressure coefficient, 2As(_s - pc)/%V02A c

additive drag, (Ib)
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Ff,s

Fj

F n

Fn,i

Fp

F
s

g

K

M

m

P

P

Pc

N

R

T

total momentum, mV + A(p - p0), (ib)

sum of external pressure and friction drags, (ib)

axial component of force on fluid due to friction on

portion of center body forward of station l, (lb)

Jet thrust, mVe + Ae(Pe - p0), (lb)

net thrust, (ib)

net internal thrust, (ib)

inertial reaction of net propulsive thrust, (lb)

scoop incremental drag, (lb)

acceleration due to gravity, (ft/sec 2)

bow-wave-position parameter

Mach number

mass-flow rate of fluid passing through inlet, (slugs/sec)

maximum theoretical rate of mass flow through capture

area m O0VoAc, (slugs/sec)

total pressure, (Ib/sq ft absolute)

static pressure, (lb/sq ft absolute)

theoretical static pressure on surface of cone behind an

oblique shock, (lb/sq ft absolute)

effective static pressure on portion of center body forward of

station l, (lb/sq ft absolute)

theoretical static pressure immediately behind an oblique shock

wave, (Ib/sq ft absolute)

gas constant, (ft/°R)

total temperature, (oR)

........ T
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t static temperature, (oR)

V velocity, (ft/sec)

ratio of mass-flow rate with supersonic flow at inlet to

maximum theoretical capture-area mass flow

7 ratio of specific heats

ec cone half-angle of inlet center body

e_ cowl-position parameter, angle between axis of inlet and
straight line that connects tip of center Body with lip of

cowl

angle at station i between average direction of flow and

longitudinal axis of inlet

p density, (slu@s/cu ft)

Subscripts :

0 free stream

1 conditions at engine inlet (defined in text for particular

types of inlet)

e conditions at engine outlet

(o

The net propulsive thrust of an engine at zero angle of attack is

the resultant of the sum of the axial components of the pressure and

friction forces acting on the engine. A schematic representation of

these forces as applied to a ram Jet in accelerated flight is shown in

figure l, in which the net propulsive thrust of the engine is replaced

by an equal and opposite inertial force Fp according to D'Alembert's

principle for accelerating systems. The forces are defined as positive

in the directions shown by their arrows.

The sum of pressure and friction forces acting on the interior of

the engine, which is called the net internal thrust Fn,i, can be

calculated from the change in total momentum mV + A(p - po ) between

stations 1 and e of the fluid passing through the engine (fig. l(a)),

that is,
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Fn, i = Fj - F 1 (i)

where Fj ! mV e + Ae(Pe - p0 ) and F1 m mV 1 + Al(Pl - p0 ).

Then

F-- Fn,=, - F_ (2)

where Fd is the sum of the pressure and friction forces acting on the
exterior-of the engine.

It is customary, however, to evaluate engine performance between

stations 0 and e (fig. l(b)) and to call the change in total momentum of

the internal flow (between stations 0 and e) the net thrust F n as
given by

Fn = Fj - Fo (3)

where

F0 _ mY0 + A0(P0 - p0) = mYo

In this case, however,

Fp ¢ Fn -Fd

because the change in total momentum of the free stream between sta-

tions 0 and 1 has not been considered. Therefore, in order to obtain

the net propulsive thrust Fp, this momentum change (which is called

additive drag Da) must be included to give

Fp = ;_ -F_ -Da (4)

A mathematical definition of additive drag can be obtained by com-

bining equations (1) to (4) to give

Da = _n - _,i = F1 " F0 (s)

or using the definitions of F I and F0

D a = mV I + AI(P 1 - p0 ) - mV 0 (5a)

$C_FL_._',,"_.,TAT,
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where appropriate average values of the quantities at station i are

use_.

Another interpretation (which gives physical meaning to net

thrust Fn) is to consider that the diverging portion of the entering

stream tube behind a bow wave (fig. 2(a)) from I to II is replaced by a

thin, frictionless membrane (fig. 2(b)). Inasmuch as the flow fiel_ is

unchanged, the net propulsive thrust Fp will not be affected. Because

the engine has alre_ly been credited with the thrust _ue to the pressure

acting on the interior of the hypothetical extension of the engine

from I to II b7_ its inclusion in the net thrust Fn, a drag force must

be added because of the pressure acting on the exterior of the engine

extension which is equal to

_i II (p - po ) d_

where dA x is the axial projection of the surface area. This integral

may also be used to define the additive drag and is equivalent to the

definition given by equation (5a), as can easily be seen by applying the

momentum theorem around the surface I, II,III,IV, I in figure 2(b).

Although no change in the forces on the inlet occurs when an inlet

is extended to free-stream diameter along a streamline, an increase in

net propulsive thrust would be obtained if the inlet were extended in

the manner shown in figure 2(c). In this case the angle through which

the entering streamline is turned is made smaller than the detachment

angle and the bow wave is replaced by a normal shock at the entrance to

the inlet and an oblique shock off the lip. Comparing the modified

inlet in figure 2(c) with the one in figure 2(a), it has been found

that the increase in the cowl-pressure drag owing to the extension of

the inlet from II to I is much less than the value of the additive drag

eliminated because the increase in pressure behind the oblique shock in

figure 2(c) is much less than the pressure rise behind the nearly normal

shock in figure 2(a).

Equation (5a) applies directly only to an open-nose inlet. The

comparable equation for an annular-nose inlet can be derived by con-

sidering the forces acting on the surface bounded by I,II,III,IV,V,I as

shown in figure 3(a). A summation of the axial components of the forces

acting on the enclosed fluid gives

(o

_RTIAL
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Da = mV I cos _ + A I cos _(Pl - P0 ) + As (_s " P0) - mV 0 + Ff, s (5b)

where A I corresponds to the flow area II,III, and As(_ s - p0 ) and

Ff, s are, respectively, the axial components of the pressure and the

friction forces acting on the center body, and appropriate average

values are used at station 1 and on the center body. Again, as in the

case of the open-nose inlet, a definition of additive drag equivalent to
equation (Sb) is

Da =_i II (P - p0 ) &A x

A side- or scoop-type inlet can be considered to be an annular-nose

inlet with the center body greatly extended (fig. 3(b)) and consequently

its additive drag can be found from equation (5b).

If, however, the scoop does not extend completely around the center

body, it is extremely difficult to determine the portion of the center

body which forms part of the boundary of the entering stream tube

(indicated by shaded surface on diagram) and,consequently, to determine

the proper value of _ for use in equation (Sb) o Furthermore, for

this type of fuselage, the drag on the shaded portion of the center body

is customarily included in the body drag. Consequently, it has been

suggested in reference 4, that if the approximation be made that the

drag on the shaded portion of the center body does not change as the

mass flow through the engine changes, then a scoop incremental drag Fs

can be defined equal to the change in total momentum of the entering

stream tube between station 0 and l; that is,

Fs = mV1 cos _ + Al(Pl - p0 ) - my0 (5c)

Then

Fp=F -Fd -Fs

where Fd includes the drag on the shaded portion of the center body.

If the direction of flow at station I is parallel to the axis, the for-

mulas for evaluating the scoop incremental drag and the additive drag of
an open-nose inlet (equation (5a)) are the same.



APPARATUSANDPROCEDURE

Experimental values of additive drag were obtained in the NACA

Lewis 8- by 6-foot supersonic tunnel for one open-nose and several

annular-nose inlets. The inlets formed the forward end of a 16-inch

ram Jet, which is schematically shown in figure 4. Two cone angles were

tested; the projection of the center bodies was varied by cylindrical

spacer blocks so as to obtain various supercritlcal mass-flow ratios.

The values of cone angle, center-bedy position, and design mass-flow

ratio investigated are given in the table appearing in figure 4.

Tests were conducted at free-stream Mach numbers of 1.8 and 1.6

over a range of mass-flow ratio, which was controlled by a variable-

area orifice valve located in the engine combustion chamber. Static

pressures on the internal surface of the cowl and on the center body

forward of station 2 (located 15 in. back of cowl lip) were measured by

wall orifices and total pressure at station 2 was measured by a rake of

total-pressure tubes. The weight flow was calculated from the total-

and static-pressure readings at station 2 and a correction factor was

applied to bring the data in agreement with the theoretical values of

supercritical mass flow. The additive drag was then calculated by

taking a momentum balance around the surface I,Ii,III,IV,V,VI,I of

figure 4.

_O

_O

COMPARISON OF THEORY AND EXPERIMENT

Open-Nose Inlets

The equation for the additive-drag coefficient Cd, a for an open-

nose inlet based on the inlet lip area may be derived from equation (5a)

as shown in the appendix to give

_ 2 I_PlPl AO 21 (6)Cd'a 7MO 2 P0 Pl (TM12+l) - 1 -A-[ 7M0

where

AO P0VoA0 m

A1 - P0VoA1 mma x

For given values of M 0 and mass-flow ratio, the value of M I can

be obtained by applying the continuity equation between stations 0 and 1.

This relation may be written in the form
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A0 P1

f(M°)= f(M1) (7)

where

with the usual assumption that TI = TO . The pressure ratio pl/Po

taken equal to the value across a normal shock occurring at MO.

Inasmuch as pl/Pl and po/P0 are known functions of M 1 and MO,

all the quantities in equation (6) are determined.

is

The values of additlve-drag coefficient for an open-nose inlet

operating at Mach numbers from 1.2 to_ have been calculated by the

foregoing procedure and are presented in figure 5. For a fixed value of

mass-flow ratio m/mmax, the value of Cd, a increases with increasing

M0 and approaches a finite limit for M0 = _.

A comparison of theoretical (predicted by equation (6)) and experi-

mental (fig. 8) values of additive drag at M0 = 1.8 and 1.6 indicates
good agreement down to m/m max _ 0.4, the lowest mass-flo_ ratio investi-

gated. Because the additive drag of an open-nose inlet at a mass-flow

ratio of 1.0 must equal zero, the discrepancies at that point can be

attributed to errors in the experimental analysis. Part of this dis-

crepancy is caused by the omission of the unknown force resulting from

friction on the inside of the cowl forward of station 2 in calculating
the experimental values of additive-drag coefficient. Curves of the

additive drag coefficient predicted by the theory of reference 2 are

also shown. This theory predicts a linear variation of additive drag

with mass-flow ratio that agrees with the present analysis at mass-flow

ratios near 1.O, but underestimates the additive drag at lower mass-flow
ratios.

Annular-Nose Inlets

Before discussing the additive drag of annular-nose inlets, a basic
difference between annular- and open-nose inlets should be considered.

When an open-nose inlet is operating without a bow wave, the msss-flow

ratio m/mma x must equal 1.0 and consequently the additive drag must

equal zero. For an annular-nose inlet, however, the mass-flow ratio as

herein defined wlll not equal 1.0 even when no bow wave is present
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tmless the oblique shock stands at or inside the cowl lip. If the
obl_que shock stands upstream of the cowl lip, it follows that, owing to
the change in area of the entering stream tube behind the oblique shock
the mass-flow ratio is less than 1.O and the additive drag is greater
than zero. Consequently, it is usef_l to define an annular-inlet param-
eter B equal to the ratio of mass-flow rate with supersonic flow at
the inlet to the maximumtheoretical capture-area massflow. For most
cases this definition is equivalent to defining 6 as the supercr_tical
mass-flow ratio. Becausefrom its definition the parameter 6 is a
function only of M0 and of the geometry of the inlet, an inlet having
a value of _ = ].0 at the design M0 has a value of _ < 1.0 at an
M0 below design.

Operation with conical flow at inlet. - When an annular-nose inlet
having a center body that is conical forward of station i (fig. 3(a)) is

operating without any bow waves, the flow behind the oblique shock gen-
erated by the center body can be predicted from conical flow theory (for

example, reference 9). In this case it is possible to evaluate the

additive drag directly from (p - po ) dAx . This procedure has been

followed for four cone angles over a range of Mach numbers from a value

slightly greater than the minimum for an attached shock to an M0 of 5.0
(fig. 7). The curves show that for a fixed value of mass-flow ratio,

the additive-drag coefficient decreases as M0 increases, which is

opposite to the trend in figure 5 for an open-nose inlet. The variation

of values of mass-flow ratio with cowl-position parameter 8_ is also

given from which the theoretical supercritical mass-flow ratio 6 can

be determined when the geometry of the inlet and M0 are known.

Operation with bow wave. - The equation for the additive-drag coef-

ficient based on the capture area Ac of an annular-nose inlet can be

derived from equation (5b) (as shown in the appendix) to give

2 P0P1Pl A %Cd'a = 7--_ P0 PO PI (7M12 + I) cos A+ Ac P0 A0 2]--- -1- ÷Cf,s

where appropriate average values are used at station i.

(8)

In evaluating equation (8), M can be found by applying the con-

tinuity equation (equation (7)) asla function of A0/A c : (_IAI)(_IA c)

if the average pressure recovery PI/P0 and flow angle _ are known.

For calculations involving an inlet having a center body _hat is conical

_0

(C
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forward of station i, when the oblique shock stands at the lip (_ = 1.0),

the pressure recovery PI/P0 is closely approximated by the product of

the pressure ratio across an oblique shock an_ the ratio across a normal

shock occurring at the average of the Mach numbers on the cone surface

and directly behind the oblique shock. If it is assumed that the

average flow angle k is independent of _, ;_ can be determined for an

inlet whose _ equals 1.0 by the condition that Cd a = 0 for

m/mma x = 1.0. The effect of friction on the center _ody
Cf_ s Is

negligible an_ can be assumed to be zero.

In reference 3, it was assumed as a first approximation that

_s/P0 = Pc/P0" This assumption will give the correct value of additive

drag when the mass-flow ratio equals _, and should increasingly under-

estimate the additive drag as the mass-flow ratio is reduced. It was

also assumed that for subcritical flow the value of pressure recovery

was constant at the value previously described for _ = 1.0. Re

assumptions described previously for PI/P0 , _s/P0, _, sad Cf, s have

been used in obtaining the theoretical additive-_rag curves in refer-

ences 7 and 8. An improved approximation for _s/P0, an_ the effect of

variations in the pressure recovery frc_ the value assumed are discussed

in the following sections :

Prediction of pressures on center bod_. - A better approximation

for _s/P0^ can be based upon a simplification of the results given in
reference z for determining the position of a bow wave. In terms of the

notation given on the sketch in figure 8, calculations based upon equa-

tions in reference 2 show that for an annular-nose inlet with _ _ 1.0,

the variation of L'/y c with mass-flow ratio is approximately linear

for M 0 > 1.8. The length Yc is the radius of the inlet at the cowl

lip, and the assumption is ma_e that L L' where L is the axial= j

distance from the point where As is measured to the point where the

bow wave intersects the center bo_y. As a simplification it will be

assumed that L/y c = K(I - m/mmax) ; K is independent of cone angle and

its variation with M0 is given in the following table:

11.131 .89 .76 .6s

The values of g were determined by plotting L/y c against mass-flow

ratio and finding the mean slope of the curves. Then from the geometry

of the figure

Y = Ys " YcK(l-m/mmax) tan ec
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where Ys is the radius at A . This gives
8

[ cA
from which

Forward. of

can be calculated.

(9)

Ay, the pressure on the center body equals the previ-

ously assumed value of Pc" The average pressure _ behind Ay will

lle between Pl and py, defined as the value behind a normal shock at

the cone surface Mach number; it will be assumed that _ = (py + pl)/2.

An incremental-cone-pressure coefficient C s • 2As(_s - pc)/O0V02Ac can

now be defined. When added directly to the value of Cd, a obtained

using the approximation _s = Pc' Cs will acount for the increase in

additive drag caused by the increase of pressure on the cone behind the

bow wave. Using the development given

2 (AB" Pc) (i0)
cs- Mo2 % po

The variation of Cs with mass-flow ratio for a 25 ° half-angle cone is

shown in figure 8 for a range of MO-

Although the approximate relation L/y c = K(I - m/mma x) is based

upon a derivation in reference 2 for inlets with =8__I_KL it will beassumed that for other inlets the relation L/y c -(m/mmax)(i/6_

is approximately true, where the values of K are the same as those

given previously. Using this approximation a comparison of the varia-

tion of the theoretical and experimental values of Cs with

(m/mmax)(i/6), is shown in figure 9. For a given M 0 at a fixed value

of (m/mmax)(i/B) , the theory predicts that Cs increases as

decreases. The scatter of the experimental data is, however, too great

to allow a conclusion to be drawn as to the variation of Cs with

for the inlets tested. For mass-flow ratios less than approximately

0.85 to 0.95, the flow into the inlets was pulsating so that the model

upon which the theoretical results are based can only be considered to

represent an average condition and scatter in the data is to be expected.

Nevertheless, for ec = 20°, the theory agrees with the data moderately

o_
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well; for ec = 25 °, the experimental values are greater than theoreti-
cal. In all cases the theory is an improvement over the previous

assumption, which corresponds to Cs = 0.

The variation of additive-drag coefficient with mass-flow ratio as

calculated from equation (8) including the effect of the incremental-

cone-pressure coefficient Cs and using the value of pressure recovery

PI/Po, described previously for 6 = 1.0, is shown in figure I0 at three

values of _ for each of two annular inlets operating at M0 = 1.8.
For comparison, the value of additive-drag coefficient for an open-nose

inlet at the same M 0 is also shown. For a fixed value of mass-flow

ratio an_ as 6 decreases from 1.0, the additive drag decreases from a
value greater than that for an open-nose inlet to a minimum when the

flow at the inlet is supersonic. Curves of the minimum value of Cd,a,
as determined from equation (8) which is obtainable at each value of

mass-flow ratio (that is, when the flow at the inlet is supersonic), are
also shown for both cone angles. Comparable curves computed from coni-

cal flow theory (fig. 7) are shown for comparison. The differences in

these minimum additive-drag curves can be attributed to the small

changes in pressure recovery and flow angle k that occur as B is

reduced and which were neglected in the evaluation of equation (8).

Each point on these minimum Cd, a curves corresponds to a different

inlet configuration, whereas the curves for a given _ refer to one

inlet. From figure I0, if a given amount of air must be spilled it is

better, from additive drag considerations, to achieve this by allowing

the oblique shock to stand upstream of the cowl lip rather than by

spilling the air behind a bow wave. Consequently, for an engine

designed to operate over a range of MO, an appreciable gain in net pro-

pulsive thrust can be realized at values of M 0 below the design value

by utilizing an inlet in which the projection of the center body

increases as M0 decreases to maintain supersonic flow at the inlet

Effect of inlet total-pressure recover_. - The additive_Irag curves

of figure l0 assume that the pressure recovery P1/P0 is constant at

the value calculated for _ = 1.0. The experimental total-pressure

ratio between stations 0 and 2 is shown in figure ii and compared to the

assumed value of P1/P0. If it is assumed that P2/P 1 is very close to

1.0, the difference between the experimental and theoretical values indi-

cates that the effect on additive drag of a reduction in pressure recov-

ery should be considered. The effect on additiv e drag of varying the
ratio of assumed pressure recovery to the recovery for 6 = 1.0 from 1.0

to 0.8 at two values of _ for an annular inlet with a 20° half-angle

cone at M0 = 1.8 is shown in figure 12. Overestimating the pressure
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recovery overestimates the additive drag by an amount that is independ-

ent of mass-flow ratio for a given value of _ but decreases as
decreases.

Experimental values of additive drag obtained from tests of

annular-nose inlets are shown in figure 13 for free-stream Mach numbers

of 1.8 (design value) and 1.6. These results are compared with the
theoretical curves obtained from equation (8) using the approximations

of reference 3 and using the approximation for _s/Po presented in this

paper and experimental values of pressure recovery. The curves calcu-
lated with the present method also begin at the more exact values of

additive-drag coefficient given in figure 7.

The discrepancies between the experimental data and the theoretical
curves of the present method at and near supercritical flow conditions

can be attributed primarily to the omission of the unknown force due to

friction on the center body and cowl forward of station 2 in calculating

the experimental values of additive-drag coefficient. This error is

greatest near supercritical flow conditions and decreases as the mass-

flow ratio decreases. At lower values of mass-flow ratio, the differ-
ences between theory and experiment are due primarily to the error made

in predicting the magnitude of the force resulting from the variable

static pressures on the center body, as can be seen by comparing the
differences between theory and experiment in figures 9 and 13. As pre-

viously suggested, these errors may be due in part to the pulsating con-
dition of the flow at low mass-flow ratios.

The good agreement shown here between the experimental data for
inlets with _ _ i and the theoretical curves obtained using the

assumptions of reference 3 (which was also obtained in references 7

and 8) is due to a fortuitous cancellation of the errors due to

assuming higher pressure recoveries and lower pressures on the center

body than those actually obtained.

(O

CALCULATION OF ADDITIVE DRAG FROM SCHLIEREN PHOTOGRAPHS

Another means of calculating additive drag, which approaches the

problem from a different veiwpoint, can be obtained from the method

presented in reference 8. This method allows the sum of the additive

and cowl-pressure drags to be computed using a schlieren photograph of
the inlet shock configuration and knowing the mass-flow ratio m/m___.

@

If the cowl-pressure drag can be determined by another method, sub-

tracting it from the sum of the two drags will give the additive drag

The method involves taking a momentum balance around the surface



NACA RM E51BI3 _=_=_.T__-- 15

o_

,-4

I,II,III,III',IV,V,VI,I as shown in figure 14, where it is assumed that

the cowl is cylindrically extended downstream from its point of maximum

diameter IIl, to station X so that PX - PO and AIII, mall I. An arbi-

trary point V on the bow wave is then chosen and the streamline VI,V, IV
extended through it. Then

F III
(p - po) = m(Vo -Vx) + " PO) (A:v" AV)

_II

(ii)

_ii IIIwhere (p - p0 ) dA x defines the sum of the additive an_ cowl-

pressure drags. In reference 5 two alternative assumptions are sug-

gested for PIV,V; namely, PIV,V = Pw at V, which gives an upper limit,

and _IV,V = (Pw + P0 )/2' which generally gives a lower limit. The flow

is also assumed to be isentropic behind the bow wave.

In order to evaluate equation (ii) it is necessary to determine m,

VX (or MX) , and AIV. The mass flow m can be calculated from

OOV0(AvI - AI) , where A I is a function of the given mass-flow ratio.
1

The total pressure behind the bow wave PII,V can be determined by prop-

erly weighting the total-pressure loss across the bow wave at several

points from II to V. Then from the isentropic flow assumption MX can

be determined from po/_ii,V. Finally, AIV can be computed by apply-

ing the continuity equation between stations 0 and X.

The results of such a calculation for additive-drag coefficient,

using a shock length of two inlet diameters, are shown in figure 14 for

an annular inlet with a 28 ° half-angle cone operating at M 0 = 1.79 and
compared with values obtained from pressure measurements presented in

reference 7. The cowl-pressure drag used in computing the curves was
also taken from reference 7.

The curves show that for the shock length used the assumption made

for _IV,V greatly influences the results. For the engine tested, the

assumption that P-IV,V = (Pw + P0 )/2 gave good agreement, expecially at

high mass-flow ratios. In order to determine the importance of accu-

rately determining the average pressure ratio across the portion of the

bow wave considered, the effect on the values of additive drag of an
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error of 0.5 percent in _ll,V was also calculated (by multiplying the

computed P--II,V by 0.995) and Is shownfor each assumption of P-IV,V;

the effect Is relatively small

SUMMARY 0FRESULTS

Formulas were developed for determining the additive drag of

annular- and open-nose inlets. Calculations based upon these formulas

showed that for a fixed lip area and cone angle the additive drag at a

given mass-flow ratio varied with the projection of the center bodj and

was least when the flow at the inlet was supersonic.

The effect on additive drag of changes In the free-streamMach num-

ber was relatively small. For annular inlets, the additive drag

decreased with increasing Mach number when the flow at the inlet was

supersonic but increased with increasing Mach number for most cases when
there was a bow wave ahead of _le inlet. For open-nose inlets, the

additive drag increased wlth IncreaslngMach number.

The forces due to the variation of static pressure on the center

body with mass-flow ratio were considered,and an analytical method of

approximating their value was developed which showed that they repre-

sented an appreciable portion of the additive drag. Overestimating the

inlet total-pressure recovery resulted in an estimate of additive drag

that was too large.

Comparisons of the theoretical values of additive drag with experi-

mental results showed excellent agreement for an open-nose inlet and

moderate agreement for several annular-nose inlets when the effects of

variable center body pressures and inlet pressure recovery were con-

sidered !n obtaining the theoretical results.

Consideration of a proposed method of obtaining the external drag

from schlieren photographs showed that when a shock length of two inlet

diameters was used the results depended largely upon the value of one

of the assumptions involved. For the particular configuration to which

this method was applied, one of the suggested values for thls assumption

gave good agreement with the value of additive drag obtained from pres-

sure measurements.

co

Lewis Flight Propulsion Laboratory,

National Advisory Committee for Aeronautics,

Cleveland, Ohio.
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APPENDIX

DERIVATION OF ADDITIVE-DRAG COEFFICIENT Cd, a

FOR ANNULAR- AND 0PEN-NOSE INLETS

The additive drag for an annular inlet is given in the text (equa-
tion (Sb)) as

D a = mV 1 cos k+ A 1 cos k (Pl - P0 ) + As (_s " P0 ) - mV0 + Ff,s (A1)

but it can be seen from figure 3(a) that

A c = A1 cos k + A s

then

D a = mV 1 cos k + AlP 1 cos k+ As_ s - AcP 0 - mV 0 + Ff, s (A2)

Substituting

m = OAV and p = p/g Rt

gives

PlAIVI 2 cos

D a = _ + AlP I cos k + As_ s - AcP 0
gRt I

(_)

Substituting M 2 = V2/TgRt and dividing by AcP 0 gives

Da AlPl_M12 cos k AlP 1 cos k As_ s A07M02 Ff_m
--= + + --- I + (A4)
AoP 0 AcP 0 AcP 0 AcP 0 A c AcP 0

Pl P0 P1 Pl
1 m

Substituting P0 P0 P0 PI' rearranging, and converting into coefficient

form gives

2 FA__ P0 PI P_I (TMI 2 AsP-s A0 21Cd'a" ---_ p0Po P1 ÷ l) cos _÷ A_p--_- 1 -_ _o ÷ cf
7M 0 ,S

(A5)
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The value of Cd, a for an open-nose inlet can be derived from equa-

tion (AS) by noting that for an open-nose inlet AI = Ac, cos N = i,

= 0, which reduces equation (AS) to
AS_ = 0, and Cf, s

Cd,a _M02 P0 P1 (7M12 + I) - 1 - A-T 7M0

(A6)

'.0
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Figure 3. - Schematic views of annular-nose- and
scoop-type inlets.
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